Whakaoti mō x (complex solution)
x=2+4i
x=2-4i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}x^{2}-x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{4}\times 5}}{2\times \frac{1}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{4} mō a, -1 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-5}}{2\times \frac{1}{4}}
Whakareatia -4 ki te \frac{1}{4}.
x=\frac{-\left(-1\right)±\sqrt{-4}}{2\times \frac{1}{4}}
Tāpiri 1 ki te -5.
x=\frac{-\left(-1\right)±2i}{2\times \frac{1}{4}}
Tuhia te pūtakerua o te -4.
x=\frac{1±2i}{2\times \frac{1}{4}}
Ko te tauaro o -1 ko 1.
x=\frac{1±2i}{\frac{1}{2}}
Whakareatia 2 ki te \frac{1}{4}.
x=\frac{1+2i}{\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{1±2i}{\frac{1}{2}} ina he tāpiri te ±. Tāpiri 1 ki te 2i.
x=2+4i
Whakawehe 1+2i ki te \frac{1}{2} mā te whakarea 1+2i ki te tau huripoki o \frac{1}{2}.
x=\frac{1-2i}{\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{1±2i}{\frac{1}{2}} ina he tango te ±. Tango 2i mai i 1.
x=2-4i
Whakawehe 1-2i ki te \frac{1}{2} mā te whakarea 1-2i ki te tau huripoki o \frac{1}{2}.
x=2+4i x=2-4i
Kua oti te whārite te whakatau.
\frac{1}{4}x^{2}-x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{4}x^{2}-x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
\frac{1}{4}x^{2}-x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{4}x^{2}-x}{\frac{1}{4}}=-\frac{5}{\frac{1}{4}}
Me whakarea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{1}{\frac{1}{4}}\right)x=-\frac{5}{\frac{1}{4}}
Mā te whakawehe ki te \frac{1}{4} ka wetekia te whakareanga ki te \frac{1}{4}.
x^{2}-4x=-\frac{5}{\frac{1}{4}}
Whakawehe -1 ki te \frac{1}{4} mā te whakarea -1 ki te tau huripoki o \frac{1}{4}.
x^{2}-4x=-20
Whakawehe -5 ki te \frac{1}{4} mā te whakarea -5 ki te tau huripoki o \frac{1}{4}.
x^{2}-4x+\left(-2\right)^{2}=-20+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-20+4
Pūrua -2.
x^{2}-4x+4=-16
Tāpiri -20 ki te 4.
\left(x-2\right)^{2}=-16
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=4i x-2=-4i
Whakarūnātia.
x=2+4i x=2-4i
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}