Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}=4x^{2}+144
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 4,9.
9x^{2}-4x^{2}=144
Tangohia te 4x^{2} mai i ngā taha e rua.
5x^{2}=144
Pahekotia te 9x^{2} me -4x^{2}, ka 5x^{2}.
x^{2}=\frac{144}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{12\sqrt{5}}{5} x=-\frac{12\sqrt{5}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9x^{2}=4x^{2}+144
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 4,9.
9x^{2}-4x^{2}=144
Tangohia te 4x^{2} mai i ngā taha e rua.
5x^{2}=144
Pahekotia te 9x^{2} me -4x^{2}, ka 5x^{2}.
5x^{2}-144=0
Tangohia te 144 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-144\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-144\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-144\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{2880}}{2\times 5}
Whakareatia -20 ki te -144.
x=\frac{0±24\sqrt{5}}{2\times 5}
Tuhia te pūtakerua o te 2880.
x=\frac{0±24\sqrt{5}}{10}
Whakareatia 2 ki te 5.
x=\frac{12\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{5}}{10} ina he tāpiri te ±.
x=-\frac{12\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{5}}{10} ina he tango te ±.
x=\frac{12\sqrt{5}}{5} x=-\frac{12\sqrt{5}}{5}
Kua oti te whārite te whakatau.