Whakaoti mō x
x=4\sqrt{3}\approx 6.92820323
x=-4\sqrt{3}\approx -6.92820323
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { x ^ { 2 } } { 4 ^ { 2 } } = \frac { 39 } { 13 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{x^{2}}{16}=\frac{39}{13}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{x^{2}}{16}=3
Whakawehea te 39 ki te 13, kia riro ko 3.
x^{2}=3\times 16
Me whakarea ngā taha e rua ki te 16.
x^{2}=48
Whakareatia te 3 ki te 16, ka 48.
x=4\sqrt{3} x=-4\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{x^{2}}{16}=\frac{39}{13}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{x^{2}}{16}=3
Whakawehea te 39 ki te 13, kia riro ko 3.
\frac{x^{2}}{16}-3=0
Tangohia te 3 mai i ngā taha e rua.
x^{2}-48=0
Whakareatia ngā taha e rua o te whārite ki te 16.
x=\frac{0±\sqrt{0^{2}-4\left(-48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-48\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{192}}{2}
Whakareatia -4 ki te -48.
x=\frac{0±8\sqrt{3}}{2}
Tuhia te pūtakerua o te 192.
x=4\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{3}}{2} ina he tāpiri te ±.
x=-4\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{3}}{2} ina he tango te ±.
x=4\sqrt{3} x=-4\sqrt{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}