Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{2}}{16}=\frac{39}{13}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{x^{2}}{16}=3
Whakawehea te 39 ki te 13, kia riro ko 3.
x^{2}=3\times 16
Me whakarea ngā taha e rua ki te 16.
x^{2}=48
Whakareatia te 3 ki te 16, ka 48.
x=4\sqrt{3} x=-4\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{x^{2}}{16}=\frac{39}{13}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{x^{2}}{16}=3
Whakawehea te 39 ki te 13, kia riro ko 3.
\frac{x^{2}}{16}-3=0
Tangohia te 3 mai i ngā taha e rua.
x^{2}-48=0
Whakareatia ngā taha e rua o te whārite ki te 16.
x=\frac{0±\sqrt{0^{2}-4\left(-48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-48\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{192}}{2}
Whakareatia -4 ki te -48.
x=\frac{0±8\sqrt{3}}{2}
Tuhia te pūtakerua o te 192.
x=4\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{3}}{2} ina he tāpiri te ±.
x=-4\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{3}}{2} ina he tango te ±.
x=4\sqrt{3} x=-4\sqrt{3}
Kua oti te whārite te whakatau.