Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{9}{4}\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}=\frac{9}{2}
Whakareatia te \frac{9}{4} ki te 2, ka \frac{9}{2}.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{9}{4}\times 2
Me whakarea ngā taha e rua ki te 2.
x^{2}=\frac{9}{2}
Whakareatia te \frac{9}{4} ki te 2, ka \frac{9}{2}.
x^{2}-\frac{9}{2}=0
Tangohia te \frac{9}{2} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{9}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{9}{2}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{18}}{2}
Whakareatia -4 ki te -\frac{9}{2}.
x=\frac{0±3\sqrt{2}}{2}
Tuhia te pūtakerua o te 18.
x=\frac{3\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±3\sqrt{2}}{2} ina he tāpiri te ±.
x=-\frac{3\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±3\sqrt{2}}{2} ina he tango te ±.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Kua oti te whārite te whakatau.