Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2\times 12^{2}=2x^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
x^{2}+2\times 144=2x^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
x^{2}+288=2x^{2}
Whakareatia te 2 ki te 144, ka 288.
x^{2}+288-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}+288=0
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}=-288
Tangohia te 288 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-288}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=288
Ka taea te hautanga \frac{-288}{-1} te whakamāmā ki te 288 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=12\sqrt{2} x=-12\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}+2\times 12^{2}=2x^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
x^{2}+2\times 144=2x^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
x^{2}+288=2x^{2}
Whakareatia te 2 ki te 144, ka 288.
x^{2}+288-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}+288=0
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 288}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 288 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 288}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 288}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{1152}}{2\left(-1\right)}
Whakareatia 4 ki te 288.
x=\frac{0±24\sqrt{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te 1152.
x=\frac{0±24\sqrt{2}}{-2}
Whakareatia 2 ki te -1.
x=-12\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{2}}{-2} ina he tāpiri te ±.
x=12\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±24\sqrt{2}}{-2} ina he tango te ±.
x=-12\sqrt{2} x=12\sqrt{2}
Kua oti te whārite te whakatau.