Whakaoti mō x
x = \frac{20000 \sqrt{950625000130} + 32500000000}{12999999999} \approx 4
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}\approx 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Whakareatia te 13 ki te 1000000000, ka 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 13000000000 ki te x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Whakamahia te āhuatanga tuaritanga hei whakarea te 13000000000x-52000000000 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Tangohia te 13000000000x^{2} mai i ngā taha e rua.
-12999999999x^{2}=-65000000000x+52000000000
Pahekotia te x^{2} me -13000000000x^{2}, ka -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Me tāpiri te 65000000000x ki ngā taha e rua.
-12999999999x^{2}+65000000000x-52000000000=0
Tangohia te 52000000000 mai i ngā taha e rua.
x=\frac{-65000000000±\sqrt{65000000000^{2}-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12999999999 mō a, 65000000000 mō b, me -52000000000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65000000000±\sqrt{4225000000000000000000-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Pūrua 65000000000.
x=\frac{-65000000000±\sqrt{4225000000000000000000+51999999996\left(-52000000000\right)}}{2\left(-12999999999\right)}
Whakareatia -4 ki te -12999999999.
x=\frac{-65000000000±\sqrt{4225000000000000000000-2703999999792000000000}}{2\left(-12999999999\right)}
Whakareatia 51999999996 ki te -52000000000.
x=\frac{-65000000000±\sqrt{1521000000208000000000}}{2\left(-12999999999\right)}
Tāpiri 4225000000000000000000 ki te -2703999999792000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{2\left(-12999999999\right)}
Tuhia te pūtakerua o te 1521000000208000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998}
Whakareatia 2 ki te -12999999999.
x=\frac{40000\sqrt{950625000130}-65000000000}{-25999999998}
Nā, me whakaoti te whārite x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} ina he tāpiri te ±. Tāpiri -65000000000 ki te 40000\sqrt{950625000130}.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Whakawehe -65000000000+40000\sqrt{950625000130} ki te -25999999998.
x=\frac{-40000\sqrt{950625000130}-65000000000}{-25999999998}
Nā, me whakaoti te whārite x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} ina he tango te ±. Tango 40000\sqrt{950625000130} mai i -65000000000.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Whakawehe -65000000000-40000\sqrt{950625000130} ki te -25999999998.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999} x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Kua oti te whārite te whakatau.
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Whakareatia te 13 ki te 1000000000, ka 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 13000000000 ki te x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Whakamahia te āhuatanga tuaritanga hei whakarea te 13000000000x-52000000000 ki te x-1 ka whakakotahi i ngā kupu rite.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Tangohia te 13000000000x^{2} mai i ngā taha e rua.
-12999999999x^{2}=-65000000000x+52000000000
Pahekotia te x^{2} me -13000000000x^{2}, ka -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Me tāpiri te 65000000000x ki ngā taha e rua.
\frac{-12999999999x^{2}+65000000000x}{-12999999999}=\frac{52000000000}{-12999999999}
Whakawehea ngā taha e rua ki te -12999999999.
x^{2}+\frac{65000000000}{-12999999999}x=\frac{52000000000}{-12999999999}
Mā te whakawehe ki te -12999999999 ka wetekia te whakareanga ki te -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=\frac{52000000000}{-12999999999}
Whakawehe 65000000000 ki te -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=-\frac{52000000000}{12999999999}
Whakawehe 52000000000 ki te -12999999999.
x^{2}-\frac{65000000000}{12999999999}x+\left(-\frac{32500000000}{12999999999}\right)^{2}=-\frac{52000000000}{12999999999}+\left(-\frac{32500000000}{12999999999}\right)^{2}
Whakawehea te -\frac{65000000000}{12999999999}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{32500000000}{12999999999}. Nā, tāpiria te pūrua o te -\frac{32500000000}{12999999999} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=-\frac{52000000000}{12999999999}+\frac{1056250000000000000000}{168999999974000000001}
Pūruatia -\frac{32500000000}{12999999999} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=\frac{380250000052000000000}{168999999974000000001}
Tāpiri -\frac{52000000000}{12999999999} ki te \frac{1056250000000000000000}{168999999974000000001} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{32500000000}{12999999999}\right)^{2}=\frac{380250000052000000000}{168999999974000000001}
Tauwehea x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32500000000}{12999999999}\right)^{2}}=\sqrt{\frac{380250000052000000000}{168999999974000000001}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{32500000000}{12999999999}=\frac{20000\sqrt{950625000130}}{12999999999} x-\frac{32500000000}{12999999999}=-\frac{20000\sqrt{950625000130}}{12999999999}
Whakarūnātia.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999} x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Me tāpiri \frac{32500000000}{12999999999} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}