Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Tohaina

\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Whakawehe \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ki te \frac{x}{\left(x+z\right)^{2}-y^{2}} mā te whakarea \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ki te tau huripoki o \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
Me whakakore tahi te x\left(x+y+z\right)\left(x+y-z\right) i te taurunga me te tauraro.
\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\left(x-y+z\right)\times \frac{y}{x-y+z}
Me whakakore tahi te x-y-z i te taurunga me te tauraro.
y
Me whakakore te x-y+z me te x-y+z.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Whakawehe \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ki te \frac{x}{\left(x+z\right)^{2}-y^{2}} mā te whakarea \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ki te tau huripoki o \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
Me whakakore tahi te x\left(x+y+z\right)\left(x+y-z\right) i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y}{x-y+z})
Me whakakore tahi te x-y-z i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
Me whakakore te x-y+z me te x-y+z.
y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
y^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.