Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Tauwehea te x^{2}-25. Tauwehea te x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-5\right)\left(x+5\right) me \left(x+5\right)\left(x+6\right) ko \left(x-5\right)\left(x+5\right)\left(x+6\right). Whakareatia \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} ki te \frac{x+6}{x+6}. Whakareatia \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} ki te \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Tā te mea he rite te tauraro o \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} me \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Mahia ngā whakarea i roto o \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Whakakotahitia ngā kupu rite i x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Whakarohaina te \left(x-5\right)\left(x+5\right)\left(x+6\right).
\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Tauwehea te x^{2}-25. Tauwehea te x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-5\right)\left(x+5\right) me \left(x+5\right)\left(x+6\right) ko \left(x-5\right)\left(x+5\right)\left(x+6\right). Whakareatia \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} ki te \frac{x+6}{x+6}. Whakareatia \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} ki te \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Tā te mea he rite te tauraro o \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} me \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Mahia ngā whakarea i roto o \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Whakakotahitia ngā kupu rite i x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Whakarohaina te \left(x-5\right)\left(x+5\right)\left(x+6\right).