Whakaoti mō x
x=\frac{\sqrt{5}-1}{2}\approx 0.618033989
x=\frac{-\sqrt{5}-1}{2}\approx -1.618033989
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x^{2}=\left(x-1\right)\left(-x^{2}-x-1\right)
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(-x^{2}-x-1\right).
2x^{2}=\left(x-1\right)\left(-x^{2}-x-1\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}=-x^{3}+1
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te -x^{2}-x-1 ka whakakotahi i ngā kupu rite.
2x^{2}+x^{3}=1
Me tāpiri te x^{3} ki ngā taha e rua.
2x^{2}+x^{3}-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{3}+2x^{2}-1=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+x-1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+2x^{2}-1 ki te x+1, kia riro ko x^{2}+x-1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-1\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{-1±\sqrt{5}}{2}
Mahia ngā tātaitai.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Whakaotia te whārite x^{2}+x-1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}