Tīpoka ki ngā ihirangi matua
Whakaoti mō m (complex solution)
Tick mark Image
Whakaoti mō n (complex solution)
Tick mark Image
Whakaoti mō m
Tick mark Image
Whakaoti mō n
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
mx=-x-2-n
Tangohia te n mai i ngā taha e rua.
xm=-x-n-2
He hanga arowhānui tō te whārite.
\frac{xm}{x}=\frac{-x-n-2}{x}
Whakawehea ngā taha e rua ki te x.
m=\frac{-x-n-2}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
m=-\frac{x+n+2}{x}
Whakawehe -x-2-n ki te x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
n=-x-2-mx
Tangohia te mx mai i ngā taha e rua.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
mx=-x-2-n
Tangohia te n mai i ngā taha e rua.
xm=-x-n-2
He hanga arowhānui tō te whārite.
\frac{xm}{x}=\frac{-x-n-2}{x}
Whakawehea ngā taha e rua ki te x.
m=\frac{-x-n-2}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
m=-\frac{x+n+2}{x}
Whakawehe -x-2-n ki te x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
n=-x-2-mx
Tangohia te mx mai i ngā taha e rua.