Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 2\text{ and }x\neq 5\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=-2\end{matrix}\right.
Whakaoti mō n (complex solution)
n=-\left(mx+x+2\right)
x\neq 2\text{ and }x\neq 5
Whakaoti mō m
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 5\text{ and }x\neq 2\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=-2\end{matrix}\right.
Whakaoti mō n
n=-\left(mx+x+2\right)
x\neq 5\text{ and }x\neq 2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
mx=-x-2-n
Tangohia te n mai i ngā taha e rua.
xm=-x-n-2
He hanga arowhānui tō te whārite.
\frac{xm}{x}=\frac{-x-n-2}{x}
Whakawehea ngā taha e rua ki te x.
m=\frac{-x-n-2}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
m=-\frac{x+n+2}{x}
Whakawehe -x-2-n ki te x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
n=-x-2-mx
Tangohia te mx mai i ngā taha e rua.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
mx=-x-2-n
Tangohia te n mai i ngā taha e rua.
xm=-x-n-2
He hanga arowhānui tō te whārite.
\frac{xm}{x}=\frac{-x-n-2}{x}
Whakawehea ngā taha e rua ki te x.
m=\frac{-x-n-2}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
m=-\frac{x+n+2}{x}
Whakawehe -x-2-n ki te x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
mx+n=x^{2}-x-2-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
mx+n=-x-2
Pahekotia te x^{2} me -x^{2}, ka 0.
n=-x-2-mx
Tangohia te mx mai i ngā taha e rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}