Whakaoti mō x
x=-\frac{3}{14}\approx -0.214285714
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { x ^ { 2 } + 6 x - 7 } { 3 x ^ { 2 } - x - 2 } = 5
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x-7=5\left(x-1\right)\left(3x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{2}{3},1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(3x+2\right).
x^{2}+6x-7=\left(5x-5\right)\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
x^{2}+6x-7=15x^{2}-5x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-5 ki te 3x+2 ka whakakotahi i ngā kupu rite.
x^{2}+6x-7-15x^{2}=-5x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
-14x^{2}+6x-7=-5x-10
Pahekotia te x^{2} me -15x^{2}, ka -14x^{2}.
-14x^{2}+6x-7+5x=-10
Me tāpiri te 5x ki ngā taha e rua.
-14x^{2}+11x-7=-10
Pahekotia te 6x me 5x, ka 11x.
-14x^{2}+11x-7+10=0
Me tāpiri te 10 ki ngā taha e rua.
-14x^{2}+11x+3=0
Tāpirihia te -7 ki te 10, ka 3.
a+b=11 ab=-14\times 3=-42
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -14x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,42 -2,21 -3,14 -6,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Tātaihia te tapeke mō ia takirua.
a=14 b=-3
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-14x^{2}+14x\right)+\left(-3x+3\right)
Tuhia anō te -14x^{2}+11x+3 hei \left(-14x^{2}+14x\right)+\left(-3x+3\right).
14x\left(-x+1\right)+3\left(-x+1\right)
Tauwehea te 14x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x+1\right)\left(14x+3\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{3}{14}
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te 14x+3=0.
x=-\frac{3}{14}
Tē taea kia ōrite te tāupe x ki 1.
x^{2}+6x-7=5\left(x-1\right)\left(3x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{2}{3},1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(3x+2\right).
x^{2}+6x-7=\left(5x-5\right)\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
x^{2}+6x-7=15x^{2}-5x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-5 ki te 3x+2 ka whakakotahi i ngā kupu rite.
x^{2}+6x-7-15x^{2}=-5x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
-14x^{2}+6x-7=-5x-10
Pahekotia te x^{2} me -15x^{2}, ka -14x^{2}.
-14x^{2}+6x-7+5x=-10
Me tāpiri te 5x ki ngā taha e rua.
-14x^{2}+11x-7=-10
Pahekotia te 6x me 5x, ka 11x.
-14x^{2}+11x-7+10=0
Me tāpiri te 10 ki ngā taha e rua.
-14x^{2}+11x+3=0
Tāpirihia te -7 ki te 10, ka 3.
x=\frac{-11±\sqrt{11^{2}-4\left(-14\right)\times 3}}{2\left(-14\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -14 mō a, 11 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-14\right)\times 3}}{2\left(-14\right)}
Pūrua 11.
x=\frac{-11±\sqrt{121+56\times 3}}{2\left(-14\right)}
Whakareatia -4 ki te -14.
x=\frac{-11±\sqrt{121+168}}{2\left(-14\right)}
Whakareatia 56 ki te 3.
x=\frac{-11±\sqrt{289}}{2\left(-14\right)}
Tāpiri 121 ki te 168.
x=\frac{-11±17}{2\left(-14\right)}
Tuhia te pūtakerua o te 289.
x=\frac{-11±17}{-28}
Whakareatia 2 ki te -14.
x=\frac{6}{-28}
Nā, me whakaoti te whārite x=\frac{-11±17}{-28} ina he tāpiri te ±. Tāpiri -11 ki te 17.
x=-\frac{3}{14}
Whakahekea te hautanga \frac{6}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{28}{-28}
Nā, me whakaoti te whārite x=\frac{-11±17}{-28} ina he tango te ±. Tango 17 mai i -11.
x=1
Whakawehe -28 ki te -28.
x=-\frac{3}{14} x=1
Kua oti te whārite te whakatau.
x=-\frac{3}{14}
Tē taea kia ōrite te tāupe x ki 1.
x^{2}+6x-7=5\left(x-1\right)\left(3x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{2}{3},1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(3x+2\right).
x^{2}+6x-7=\left(5x-5\right)\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
x^{2}+6x-7=15x^{2}-5x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-5 ki te 3x+2 ka whakakotahi i ngā kupu rite.
x^{2}+6x-7-15x^{2}=-5x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
-14x^{2}+6x-7=-5x-10
Pahekotia te x^{2} me -15x^{2}, ka -14x^{2}.
-14x^{2}+6x-7+5x=-10
Me tāpiri te 5x ki ngā taha e rua.
-14x^{2}+11x-7=-10
Pahekotia te 6x me 5x, ka 11x.
-14x^{2}+11x=-10+7
Me tāpiri te 7 ki ngā taha e rua.
-14x^{2}+11x=-3
Tāpirihia te -10 ki te 7, ka -3.
\frac{-14x^{2}+11x}{-14}=-\frac{3}{-14}
Whakawehea ngā taha e rua ki te -14.
x^{2}+\frac{11}{-14}x=-\frac{3}{-14}
Mā te whakawehe ki te -14 ka wetekia te whakareanga ki te -14.
x^{2}-\frac{11}{14}x=-\frac{3}{-14}
Whakawehe 11 ki te -14.
x^{2}-\frac{11}{14}x=\frac{3}{14}
Whakawehe -3 ki te -14.
x^{2}-\frac{11}{14}x+\left(-\frac{11}{28}\right)^{2}=\frac{3}{14}+\left(-\frac{11}{28}\right)^{2}
Whakawehea te -\frac{11}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{28}. Nā, tāpiria te pūrua o te -\frac{11}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{14}x+\frac{121}{784}=\frac{3}{14}+\frac{121}{784}
Pūruatia -\frac{11}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{14}x+\frac{121}{784}=\frac{289}{784}
Tāpiri \frac{3}{14} ki te \frac{121}{784} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{28}\right)^{2}=\frac{289}{784}
Tauwehea x^{2}-\frac{11}{14}x+\frac{121}{784}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{28}\right)^{2}}=\sqrt{\frac{289}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{28}=\frac{17}{28} x-\frac{11}{28}=-\frac{17}{28}
Whakarūnātia.
x=1 x=-\frac{3}{14}
Me tāpiri \frac{11}{28} ki ngā taha e rua o te whārite.
x=-\frac{3}{14}
Tē taea kia ōrite te tāupe x ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}