Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+5x+\left(x+1\right)\left(x+1\right)=10\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
x^{2}+5x+\left(x+1\right)^{2}=10\left(x+1\right)
Whakareatia te x+1 ki te x+1, ka \left(x+1\right)^{2}.
x^{2}+5x+x^{2}+2x+1=10\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
2x^{2}+5x+2x+1=10\left(x+1\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+7x+1=10\left(x+1\right)
Pahekotia te 5x me 2x, ka 7x.
2x^{2}+7x+1=10x+10
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+1.
2x^{2}+7x+1-10x=10
Tangohia te 10x mai i ngā taha e rua.
2x^{2}-3x+1=10
Pahekotia te 7x me -10x, ka -3x.
2x^{2}-3x+1-10=0
Tangohia te 10 mai i ngā taha e rua.
2x^{2}-3x-9=0
Tangohia te 10 i te 1, ka -9.
a+b=-3 ab=2\left(-9\right)=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-6 b=3
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(2x^{2}-6x\right)+\left(3x-9\right)
Tuhia anō te 2x^{2}-3x-9 hei \left(2x^{2}-6x\right)+\left(3x-9\right).
2x\left(x-3\right)+3\left(x-3\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-3\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 2x+3=0.
x^{2}+5x+\left(x+1\right)\left(x+1\right)=10\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
x^{2}+5x+\left(x+1\right)^{2}=10\left(x+1\right)
Whakareatia te x+1 ki te x+1, ka \left(x+1\right)^{2}.
x^{2}+5x+x^{2}+2x+1=10\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
2x^{2}+5x+2x+1=10\left(x+1\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+7x+1=10\left(x+1\right)
Pahekotia te 5x me 2x, ka 7x.
2x^{2}+7x+1=10x+10
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+1.
2x^{2}+7x+1-10x=10
Tangohia te 10x mai i ngā taha e rua.
2x^{2}-3x+1=10
Pahekotia te 7x me -10x, ka -3x.
2x^{2}-3x+1-10=0
Tangohia te 10 mai i ngā taha e rua.
2x^{2}-3x-9=0
Tangohia te 10 i te 1, ka -9.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -3 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
Whakareatia -8 ki te -9.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
Tāpiri 9 ki te 72.
x=\frac{-\left(-3\right)±9}{2\times 2}
Tuhia te pūtakerua o te 81.
x=\frac{3±9}{2\times 2}
Ko te tauaro o -3 ko 3.
x=\frac{3±9}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{3±9}{4} ina he tāpiri te ±. Tāpiri 3 ki te 9.
x=3
Whakawehe 12 ki te 4.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{3±9}{4} ina he tango te ±. Tango 9 mai i 3.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{3}{2}
Kua oti te whārite te whakatau.
x^{2}+5x+\left(x+1\right)\left(x+1\right)=10\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
x^{2}+5x+\left(x+1\right)^{2}=10\left(x+1\right)
Whakareatia te x+1 ki te x+1, ka \left(x+1\right)^{2}.
x^{2}+5x+x^{2}+2x+1=10\left(x+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
2x^{2}+5x+2x+1=10\left(x+1\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+7x+1=10\left(x+1\right)
Pahekotia te 5x me 2x, ka 7x.
2x^{2}+7x+1=10x+10
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+1.
2x^{2}+7x+1-10x=10
Tangohia te 10x mai i ngā taha e rua.
2x^{2}-3x+1=10
Pahekotia te 7x me -10x, ka -3x.
2x^{2}-3x=10-1
Tangohia te 1 mai i ngā taha e rua.
2x^{2}-3x=9
Tangohia te 1 i te 10, ka 9.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
Tāpiri \frac{9}{2} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
Whakarūnātia.
x=3 x=-\frac{3}{2}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.