Whakaoti mō x
x=-40
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+40x=0
Whakareatia ngā taha e rua o te whārite ki te \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x\left(x+40\right)=0
Tauwehea te x.
x=0 x=-40
Hei kimi otinga whārite, me whakaoti te x=0 me te x+40=0.
x^{2}+40x=0
Whakareatia ngā taha e rua o te whārite ki te \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x=\frac{-40±\sqrt{40^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 40 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2}
Tuhia te pūtakerua o te 40^{2}.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{-40±40}{2} ina he tāpiri te ±. Tāpiri -40 ki te 40.
x=0
Whakawehe 0 ki te 2.
x=-\frac{80}{2}
Nā, me whakaoti te whārite x=\frac{-40±40}{2} ina he tango te ±. Tango 40 mai i -40.
x=-40
Whakawehe -80 ki te 2.
x=0 x=-40
Kua oti te whārite te whakatau.
x^{2}+40x=0
Whakareatia ngā taha e rua o te whārite ki te \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x^{2}+40x+20^{2}=20^{2}
Whakawehea te 40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 20. Nā, tāpiria te pūrua o te 20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+40x+400=400
Pūrua 20.
\left(x+20\right)^{2}=400
Tauwehea x^{2}+40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{400}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+20=20 x+20=-20
Whakarūnātia.
x=0 x=-40
Me tango 20 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}