Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{2}+1\right)\left(x^{2}-36\right)}{\left(x-6\right)\left(x^{3}+x\right)}
Me whakarea te \frac{x^{2}+1}{x-6} ki te \frac{x^{2}-36}{x^{3}+x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-6\right)\left(x+6\right)\left(x^{2}+1\right)}{x\left(x-6\right)\left(x^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x+6}{x}
Me whakakore tahi te \left(x-6\right)\left(x^{2}+1\right) i te taurunga me te tauraro.
\frac{\left(x^{2}+1\right)\left(x^{2}-36\right)}{\left(x-6\right)\left(x^{3}+x\right)}
Me whakarea te \frac{x^{2}+1}{x-6} ki te \frac{x^{2}-36}{x^{3}+x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-6\right)\left(x+6\right)\left(x^{2}+1\right)}{x\left(x-6\right)\left(x^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x+6}{x}
Me whakakore tahi te \left(x-6\right)\left(x^{2}+1\right) i te taurunga me te tauraro.