Whakaoti mō x
x=-1
x=1
x=2
x=-2
Graph
Pātaitai
Quadratic Equation
\frac { x ^ { 2 } + 1 } { 4 } + \frac { 1 } { x ^ { 2 } } = \frac { 3 } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
x^{2}\left(x^{2}+1\right)+4=6x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x^{2},2.
x^{4}+x^{2}+4=6x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te x^{2}+1.
x^{4}+x^{2}+4-6x^{2}=0
Tangohia te 6x^{2} mai i ngā taha e rua.
x^{4}-5x^{2}+4=0
Pahekotia te x^{2} me -6x^{2}, ka -5x^{2}.
t^{2}-5t+4=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -5 mō te b, me te 4 mō te c i te ture pūrua.
t=\frac{5±3}{2}
Mahia ngā tātaitai.
t=4 t=1
Whakaotia te whārite t=\frac{5±3}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=2 x=-2 x=1 x=-1
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}