Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\left(x^{2}+1\right)+4=6x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,x^{2},2.
x^{4}+x^{2}+4=6x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te x^{2}+1.
x^{4}+x^{2}+4-6x^{2}=0
Tangohia te 6x^{2} mai i ngā taha e rua.
x^{4}-5x^{2}+4=0
Pahekotia te x^{2} me -6x^{2}, ka -5x^{2}.
t^{2}-5t+4=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -5 mō te b, me te 4 mō te c i te ture pūrua.
t=\frac{5±3}{2}
Mahia ngā tātaitai.
t=4 t=1
Whakaotia te whārite t=\frac{5±3}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=2 x=-2 x=1 x=-1
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.