Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{-2}}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{y^{-2}x^{2}+1}
Me whakakore tahi te x^{-2} i te taurunga me te tauraro.
\frac{1}{1+\left(\frac{1}{y}x\right)^{2}}
Me whakaroha te kīanga.
\frac{1}{1+\left(\frac{x}{y}\right)^{2}}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{1}{1+\frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y^{2}}{y^{2}}.
\frac{1}{\frac{y^{2}+x^{2}}{y^{2}}}
Tā te mea he rite te tauraro o \frac{y^{2}}{y^{2}} me \frac{x^{2}}{y^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{y^{2}}{y^{2}+x^{2}}
Whakawehe 1 ki te \frac{y^{2}+x^{2}}{y^{2}} mā te whakarea 1 ki te tau huripoki o \frac{y^{2}+x^{2}}{y^{2}}.