Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{-14}}{x^{-9}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te -7 kia riro ai te -9.
\frac{1}{x^{5}}
Tuhia anō te x^{-9} hei x^{-14}x^{5}. Me whakakore tahi te x^{-14} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-14}}{x^{-9}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te -7 kia riro ai te -9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{5}})
Tuhia anō te x^{-9} hei x^{-14}x^{5}. Me whakakore tahi te x^{-14} i te taurunga me te tauraro.
-\left(x^{5}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{5})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{5}\right)^{-2}\times 5x^{5-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-5x^{4}\left(x^{5}\right)^{-2}
Whakarūnātia.