Aromātai
-\frac{1}{x-y}
Whakaroha
\frac{1}{y-x}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Me whakakore tahi te \frac{1}{x} i te taurunga me te tauraro.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Me whakaroha te kīanga.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Tā te mea he rite te tauraro o \frac{y}{y} me \frac{x}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Tuhia te \frac{1}{y}x^{2} hei hautanga kotahi.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Tā te mea he rite te tauraro o -\frac{x^{2}}{y} me \frac{yy}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Mahia ngā whakarea i roto o -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Whakawehe \frac{y+x}{y} ki te \frac{-x^{2}+y^{2}}{y} mā te whakarea \frac{y+x}{y} ki te tau huripoki o \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Unuhia te tohu tōraro i roto o y+x.
\frac{-1}{x-y}
Me whakakore tahi te -x-y i te taurunga me te tauraro.
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Me whakakore tahi te \frac{1}{x} i te taurunga me te tauraro.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Me whakaroha te kīanga.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Tuhia te \frac{1}{y}x hei hautanga kotahi.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Tā te mea he rite te tauraro o \frac{y}{y} me \frac{x}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Tuhia te \frac{1}{y}x^{2} hei hautanga kotahi.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Tā te mea he rite te tauraro o -\frac{x^{2}}{y} me \frac{yy}{y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Mahia ngā whakarea i roto o -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Whakawehe \frac{y+x}{y} ki te \frac{-x^{2}+y^{2}}{y} mā te whakarea \frac{y+x}{y} ki te tau huripoki o \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Unuhia te tohu tōraro i roto o y+x.
\frac{-1}{x-y}
Me whakakore tahi te -x-y i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}