Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Whakareatia te x+9 ki te x+9, ka \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Whakareatia te x ki te x, ka x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Pahekotia te x^{2} me x^{2}\times 16, ka 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x+9.
17x^{2}+18x+81-8x^{2}=72x
Tangohia te 8x^{2} mai i ngā taha e rua.
9x^{2}+18x+81=72x
Pahekotia te 17x^{2} me -8x^{2}, ka 9x^{2}.
9x^{2}+18x+81-72x=0
Tangohia te 72x mai i ngā taha e rua.
9x^{2}-54x+81=0
Pahekotia te 18x me -72x, ka -54x.
x^{2}-6x+9=0
Whakawehea ngā taha e rua ki te 9.
a+b=-6 ab=1\times 9=9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-9 -3,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
-1-9=-10 -3-3=-6
Tātaihia te tapeke mō ia takirua.
a=-3 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Tuhia anō te x^{2}-6x+9 hei \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-3\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=3
Hei kimi i te otinga whārite, whakaotia te x-3=0.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Whakareatia te x+9 ki te x+9, ka \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Whakareatia te x ki te x, ka x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Pahekotia te x^{2} me x^{2}\times 16, ka 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x+9.
17x^{2}+18x+81-8x^{2}=72x
Tangohia te 8x^{2} mai i ngā taha e rua.
9x^{2}+18x+81=72x
Pahekotia te 17x^{2} me -8x^{2}, ka 9x^{2}.
9x^{2}+18x+81-72x=0
Tangohia te 72x mai i ngā taha e rua.
9x^{2}-54x+81=0
Pahekotia te 18x me -72x, ka -54x.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 9\times 81}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -54 mō b, me 81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 9\times 81}}{2\times 9}
Pūrua -54.
x=\frac{-\left(-54\right)±\sqrt{2916-36\times 81}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-54\right)±\sqrt{2916-2916}}{2\times 9}
Whakareatia -36 ki te 81.
x=\frac{-\left(-54\right)±\sqrt{0}}{2\times 9}
Tāpiri 2916 ki te -2916.
x=-\frac{-54}{2\times 9}
Tuhia te pūtakerua o te 0.
x=\frac{54}{2\times 9}
Ko te tauaro o -54 ko 54.
x=\frac{54}{18}
Whakareatia 2 ki te 9.
x=3
Whakawehe 54 ki te 18.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Whakareatia te x+9 ki te x+9, ka \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Whakareatia te x ki te x, ka x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Pahekotia te x^{2} me x^{2}\times 16, ka 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x+9.
17x^{2}+18x+81-8x^{2}=72x
Tangohia te 8x^{2} mai i ngā taha e rua.
9x^{2}+18x+81=72x
Pahekotia te 17x^{2} me -8x^{2}, ka 9x^{2}.
9x^{2}+18x+81-72x=0
Tangohia te 72x mai i ngā taha e rua.
9x^{2}-54x+81=0
Pahekotia te 18x me -72x, ka -54x.
9x^{2}-54x=-81
Tangohia te 81 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}-54x}{9}=-\frac{81}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{54}{9}\right)x=-\frac{81}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-6x=-\frac{81}{9}
Whakawehe -54 ki te 9.
x^{2}-6x=-9
Whakawehe -81 ki te 9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-9+9
Pūrua -3.
x^{2}-6x+9=0
Tāpiri -9 ki te 9.
\left(x-3\right)^{2}=0
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=0 x-3=0
Whakarūnātia.
x=3 x=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}