Whakaoti mō x
x=-\frac{3y+7}{1-y}
y\neq 1
Whakaoti mō y
y=-\frac{x+7}{3-x}
x\neq 3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+7=y\left(x-3\right)
Tē taea kia ōrite te tāupe x ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-3.
x+7=yx-3y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x-3.
x+7-yx=-3y
Tangohia te yx mai i ngā taha e rua.
x-yx=-3y-7
Tangohia te 7 mai i ngā taha e rua.
\left(1-y\right)x=-3y-7
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-y\right)x}{1-y}=\frac{-3y-7}{1-y}
Whakawehea ngā taha e rua ki te -y+1.
x=\frac{-3y-7}{1-y}
Mā te whakawehe ki te -y+1 ka wetekia te whakareanga ki te -y+1.
x=-\frac{3y+7}{1-y}
Whakawehe -3y-7 ki te -y+1.
x=-\frac{3y+7}{1-y}\text{, }x\neq 3
Tē taea kia ōrite te tāupe x ki 3.
x+7=y\left(x-3\right)
Whakareatia ngā taha e rua o te whārite ki te x-3.
x+7=yx-3y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x-3.
yx-3y=x+7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x-3\right)y=x+7
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x-3\right)y}{x-3}=\frac{x+7}{x-3}
Whakawehea ngā taha e rua ki te x-3.
y=\frac{x+7}{x-3}
Mā te whakawehe ki te x-3 ka wetekia te whakareanga ki te x-3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}