Whakaoti mō x
x = \frac{19}{7} = 2\frac{5}{7} \approx 2.714285714
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+6\right)\left(x+6\right)+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,x+6,x^{2}+x-30.
\left(x+6\right)^{2}+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Whakareatia te x+6 ki te x+6, ka \left(x+6\right)^{2}.
\left(x+6\right)^{2}+\left(x-5\right)^{2}=2x^{2}+23x+4
Whakareatia te x-5 ki te x-5, ka \left(x-5\right)^{2}.
x^{2}+12x+36+\left(x-5\right)^{2}=2x^{2}+23x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+6\right)^{2}.
x^{2}+12x+36+x^{2}-10x+25=2x^{2}+23x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
2x^{2}+12x+36-10x+25=2x^{2}+23x+4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+36+25=2x^{2}+23x+4
Pahekotia te 12x me -10x, ka 2x.
2x^{2}+2x+61=2x^{2}+23x+4
Tāpirihia te 36 ki te 25, ka 61.
2x^{2}+2x+61-2x^{2}=23x+4
Tangohia te 2x^{2} mai i ngā taha e rua.
2x+61=23x+4
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
2x+61-23x=4
Tangohia te 23x mai i ngā taha e rua.
-21x+61=4
Pahekotia te 2x me -23x, ka -21x.
-21x=4-61
Tangohia te 61 mai i ngā taha e rua.
-21x=-57
Tangohia te 61 i te 4, ka -57.
x=\frac{-57}{-21}
Whakawehea ngā taha e rua ki te -21.
x=\frac{19}{7}
Whakahekea te hautanga \frac{-57}{-21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}