Aromātai
-\frac{x^{2}+6x+4}{x^{2}-4}
Whakaroha
-\frac{x^{2}+6x+4}{x^{2}-4}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { x + 6 } { x ^ { 2 } - 4 } - \frac { x + 5 } { x - 2 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x+5}{x-2}
Tauwehea te x^{2}-4.
\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-2\right)\left(x+2\right) me x-2 ko \left(x-2\right)\left(x+2\right). Whakareatia \frac{x+5}{x-2} ki te \frac{x+2}{x+2}.
\frac{x+6-\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{x+6}{\left(x-2\right)\left(x+2\right)} me \frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x+6-x^{2}-2x-5x-10}{\left(x-2\right)\left(x+2\right)}
Mahia ngā whakarea i roto o x+6-\left(x+5\right)\left(x+2\right).
\frac{-6x-4-x^{2}}{\left(x-2\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i x+6-x^{2}-2x-5x-10.
\frac{-6x-4-x^{2}}{x^{2}-4}
Whakarohaina te \left(x-2\right)\left(x+2\right).
\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x+5}{x-2}
Tauwehea te x^{2}-4.
\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-2\right)\left(x+2\right) me x-2 ko \left(x-2\right)\left(x+2\right). Whakareatia \frac{x+5}{x-2} ki te \frac{x+2}{x+2}.
\frac{x+6-\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{x+6}{\left(x-2\right)\left(x+2\right)} me \frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x+6-x^{2}-2x-5x-10}{\left(x-2\right)\left(x+2\right)}
Mahia ngā whakarea i roto o x+6-\left(x+5\right)\left(x+2\right).
\frac{-6x-4-x^{2}}{\left(x-2\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i x+6-x^{2}-2x-5x-10.
\frac{-6x-4-x^{2}}{x^{2}-4}
Whakarohaina te \left(x-2\right)\left(x+2\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}