Whakaoti mō x
x=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(x+5\right)-3\left(3+2x\right)+15=7-3x
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 3,5,15.
5x+25-3\left(3+2x\right)+15=7-3x
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+5.
5x+25-9-6x+15=7-3x
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3+2x.
5x+16-6x+15=7-3x
Tangohia te 9 i te 25, ka 16.
-x+16+15=7-3x
Pahekotia te 5x me -6x, ka -x.
-x+31=7-3x
Tāpirihia te 16 ki te 15, ka 31.
-x+31+3x=7
Me tāpiri te 3x ki ngā taha e rua.
2x+31=7
Pahekotia te -x me 3x, ka 2x.
2x=7-31
Tangohia te 31 mai i ngā taha e rua.
2x=-24
Tangohia te 31 i te 7, ka -24.
x=\frac{-24}{2}
Whakawehea ngā taha e rua ki te 2.
x=-12
Whakawehea te -24 ki te 2, kia riro ko -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}