Whakaoti mō x
x=1
Graph
Pātaitai
Linear Equation
\frac { x + 5 } { 2 } - \frac { 1 } { 2 } ( x + 5 ) = \frac { 2 x - 2 } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
3\left(x+5\right)-3\left(x+5\right)=2\left(2x-2\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+15-3\left(x+5\right)=2\left(2x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5.
3x+15-3x-15=2\left(2x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+5.
15-15=2\left(2x-2\right)
Pahekotia te 3x me -3x, ka 0.
0=2\left(2x-2\right)
Tangohia te 15 i te 15, ka 0.
0=4x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-2.
4x-4=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{4}{4}
Whakawehea ngā taha e rua ki te 4.
x=1
Whakawehea te 4 ki te 4, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}