Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x+6.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-6 ka whakakotahi i ngā kupu rite.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
Pahekotia te 9x me -9x, ka 0.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
Tāpirihia te 18 ki te 18, ka 36.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 11 ki te x-3.
2x^{2}+36=11x^{2}+33x-198
Whakamahia te āhuatanga tuaritanga hei whakarea te 11x-33 ki te x+6 ka whakakotahi i ngā kupu rite.
2x^{2}+36-11x^{2}=33x-198
Tangohia te 11x^{2} mai i ngā taha e rua.
-9x^{2}+36=33x-198
Pahekotia te 2x^{2} me -11x^{2}, ka -9x^{2}.
-9x^{2}+36-33x=-198
Tangohia te 33x mai i ngā taha e rua.
-9x^{2}+36-33x+198=0
Me tāpiri te 198 ki ngā taha e rua.
-9x^{2}+234-33x=0
Tāpirihia te 36 ki te 198, ka 234.
-9x^{2}-33x+234=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\left(-9\right)\times 234}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -33 mō b, me 234 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\left(-9\right)\times 234}}{2\left(-9\right)}
Pūrua -33.
x=\frac{-\left(-33\right)±\sqrt{1089+36\times 234}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-\left(-33\right)±\sqrt{1089+8424}}{2\left(-9\right)}
Whakareatia 36 ki te 234.
x=\frac{-\left(-33\right)±\sqrt{9513}}{2\left(-9\right)}
Tāpiri 1089 ki te 8424.
x=\frac{-\left(-33\right)±3\sqrt{1057}}{2\left(-9\right)}
Tuhia te pūtakerua o te 9513.
x=\frac{33±3\sqrt{1057}}{2\left(-9\right)}
Ko te tauaro o -33 ko 33.
x=\frac{33±3\sqrt{1057}}{-18}
Whakareatia 2 ki te -9.
x=\frac{3\sqrt{1057}+33}{-18}
Nā, me whakaoti te whārite x=\frac{33±3\sqrt{1057}}{-18} ina he tāpiri te ±. Tāpiri 33 ki te 3\sqrt{1057}.
x=\frac{-\sqrt{1057}-11}{6}
Whakawehe 33+3\sqrt{1057} ki te -18.
x=\frac{33-3\sqrt{1057}}{-18}
Nā, me whakaoti te whārite x=\frac{33±3\sqrt{1057}}{-18} ina he tango te ±. Tango 3\sqrt{1057} mai i 33.
x=\frac{\sqrt{1057}-11}{6}
Whakawehe 33-3\sqrt{1057} ki te -18.
x=\frac{-\sqrt{1057}-11}{6} x=\frac{\sqrt{1057}-11}{6}
Kua oti te whārite te whakatau.
\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x+6.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+6 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-6 ka whakakotahi i ngā kupu rite.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
Pahekotia te 9x me -9x, ka 0.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
Tāpirihia te 18 ki te 18, ka 36.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 11 ki te x-3.
2x^{2}+36=11x^{2}+33x-198
Whakamahia te āhuatanga tuaritanga hei whakarea te 11x-33 ki te x+6 ka whakakotahi i ngā kupu rite.
2x^{2}+36-11x^{2}=33x-198
Tangohia te 11x^{2} mai i ngā taha e rua.
-9x^{2}+36=33x-198
Pahekotia te 2x^{2} me -11x^{2}, ka -9x^{2}.
-9x^{2}+36-33x=-198
Tangohia te 33x mai i ngā taha e rua.
-9x^{2}-33x=-198-36
Tangohia te 36 mai i ngā taha e rua.
-9x^{2}-33x=-234
Tangohia te 36 i te -198, ka -234.
\frac{-9x^{2}-33x}{-9}=-\frac{234}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\left(-\frac{33}{-9}\right)x=-\frac{234}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}+\frac{11}{3}x=-\frac{234}{-9}
Whakahekea te hautanga \frac{-33}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{11}{3}x=26
Whakawehe -234 ki te -9.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=26+\left(\frac{11}{6}\right)^{2}
Whakawehea te \frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{6}. Nā, tāpiria te pūrua o te \frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{3}x+\frac{121}{36}=26+\frac{121}{36}
Pūruatia \frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{3}x+\frac{121}{36}=\frac{1057}{36}
Tāpiri 26 ki te \frac{121}{36}.
\left(x+\frac{11}{6}\right)^{2}=\frac{1057}{36}
Tauwehea x^{2}+\frac{11}{3}x+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{\frac{1057}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{6}=\frac{\sqrt{1057}}{6} x+\frac{11}{6}=-\frac{\sqrt{1057}}{6}
Whakarūnātia.
x=\frac{\sqrt{1057}-11}{6} x=\frac{-\sqrt{1057}-11}{6}
Me tango \frac{11}{6} mai i ngā taha e rua o te whārite.