Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,9 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-9\right)\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+9,x-9.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Whakamahia te āhuatanga tuaritanga hei whakarea te x-9 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te x+9 ki te 7.
x^{2}+x-27+63=\left(x+9\right)\times 7
Pahekotia te -6x me 7x, ka x.
x^{2}+x+36=\left(x+9\right)\times 7
Tāpirihia te -27 ki te 63, ka 36.
x^{2}+x+36=7x+63
Whakamahia te āhuatanga tohatoha hei whakarea te x+9 ki te 7.
x^{2}+x+36-7x=63
Tangohia te 7x mai i ngā taha e rua.
x^{2}-6x+36=63
Pahekotia te x me -7x, ka -6x.
x^{2}-6x+36-63=0
Tangohia te 63 mai i ngā taha e rua.
x^{2}-6x-27=0
Tangohia te 63 i te 36, ka -27.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Whakareatia -4 ki te -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Tāpiri 36 ki te 108.
x=\frac{-\left(-6\right)±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{6±12}{2}
Ko te tauaro o -6 ko 6.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{6±12}{2} ina he tāpiri te ±. Tāpiri 6 ki te 12.
x=9
Whakawehe 18 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{6±12}{2} ina he tango te ±. Tango 12 mai i 6.
x=-3
Whakawehe -6 ki te 2.
x=9 x=-3
Kua oti te whārite te whakatau.
x=-3
Tē taea kia ōrite te tāupe x ki 9.
\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -9,9 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-9\right)\left(x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+9,x-9.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Whakamahia te āhuatanga tuaritanga hei whakarea te x-9 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te x+9 ki te 7.
x^{2}+x-27+63=\left(x+9\right)\times 7
Pahekotia te -6x me 7x, ka x.
x^{2}+x+36=\left(x+9\right)\times 7
Tāpirihia te -27 ki te 63, ka 36.
x^{2}+x+36=7x+63
Whakamahia te āhuatanga tohatoha hei whakarea te x+9 ki te 7.
x^{2}+x+36-7x=63
Tangohia te 7x mai i ngā taha e rua.
x^{2}-6x+36=63
Pahekotia te x me -7x, ka -6x.
x^{2}-6x=63-36
Tangohia te 36 mai i ngā taha e rua.
x^{2}-6x=27
Tangohia te 36 i te 63, ka 27.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=27+9
Pūrua -3.
x^{2}-6x+9=36
Tāpiri 27 ki te 9.
\left(x-3\right)^{2}=36
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=6 x-3=-6
Whakarūnātia.
x=9 x=-3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=-3
Tē taea kia ōrite te tāupe x ki 9.