Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+2\right)\left(x+3\right)=\left(x+4\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+4,x+2.
x^{2}+5x+6=\left(x+4\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}+5x+6=x^{2}+7x+12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+4 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}+5x+6-x^{2}=7x+12
Tangohia te x^{2} mai i ngā taha e rua.
5x+6=7x+12
Pahekotia te x^{2} me -x^{2}, ka 0.
5x+6-7x=12
Tangohia te 7x mai i ngā taha e rua.
-2x+6=12
Pahekotia te 5x me -7x, ka -2x.
-2x=12-6
Tangohia te 6 mai i ngā taha e rua.
-2x=6
Tangohia te 6 i te 12, ka 6.
x=\frac{6}{-2}
Whakawehea ngā taha e rua ki te -2.
x=-3
Whakawehea te 6 ki te -2, kia riro ko -3.