Whakaoti mō x
x=5
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x + 3 } { 4 } = 1 + \frac { 3 x - 10 } { 5 }
Tohaina
Kua tāruatia ki te papatopenga
5\left(x+3\right)=20+4\left(3x-10\right)
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 4,5.
5x+15=20+4\left(3x-10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+3.
5x+15=20+12x-40
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3x-10.
5x+15=-20+12x
Tangohia te 40 i te 20, ka -20.
5x+15-12x=-20
Tangohia te 12x mai i ngā taha e rua.
-7x+15=-20
Pahekotia te 5x me -12x, ka -7x.
-7x=-20-15
Tangohia te 15 mai i ngā taha e rua.
-7x=-35
Tangohia te 15 i te -20, ka -35.
x=\frac{-35}{-7}
Whakawehea ngā taha e rua ki te -7.
x=5
Whakawehea te -35 ki te -7, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}