Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x+3\right)-3\left(x+2\right)-4=2\left(x-4\right)-9x
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
3x+9-3\left(x+2\right)-4=2\left(x-4\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
3x+9-3x-6-4=2\left(x-4\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
9-6-4=2\left(x-4\right)-9x
Pahekotia te 3x me -3x, ka 0.
3-4=2\left(x-4\right)-9x
Tangohia te 6 i te 9, ka 3.
-1=2\left(x-4\right)-9x
Tangohia te 4 i te 3, ka -1.
-1=2x-8-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
-1=-7x-8
Pahekotia te 2x me -9x, ka -7x.
-7x-8=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-7x=-1+8
Me tāpiri te 8 ki ngā taha e rua.
-7x=7
Tāpirihia te -1 ki te 8, ka 7.
x=\frac{7}{-7}
Whakawehea ngā taha e rua ki te -7.
x=-1
Whakawehea te 7 ki te -7, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}