Whakaoti mō x
x = \frac{45}{2} = 22\frac{1}{2} = 22.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(x+3\right)+2=4\left(2x-4\right)-9
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3,4.
6x+18+2=4\left(2x-4\right)-9
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+3.
6x+20=4\left(2x-4\right)-9
Tāpirihia te 18 ki te 2, ka 20.
6x+20=8x-16-9
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-4.
6x+20=8x-25
Tangohia te 9 i te -16, ka -25.
6x+20-8x=-25
Tangohia te 8x mai i ngā taha e rua.
-2x+20=-25
Pahekotia te 6x me -8x, ka -2x.
-2x=-25-20
Tangohia te 20 mai i ngā taha e rua.
-2x=-45
Tangohia te 20 i te -25, ka -45.
x=\frac{-45}{-2}
Whakawehea ngā taha e rua ki te -2.
x=\frac{45}{2}
Ka taea te hautanga \frac{-45}{-2} te whakamāmā ki te \frac{45}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}