Whakaoti mō x
x = -\frac{675}{7} = -96\frac{3}{7} \approx -96.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+25=\left(x+5\right)\times \frac{\frac{5}{2}}{\frac{16}{5}}
Tē taea kia ōrite te tāupe x ki -5 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+5.
x+25=\left(x+5\right)\times \frac{5}{2}\times \frac{5}{16}
Whakawehe \frac{5}{2} ki te \frac{16}{5} mā te whakarea \frac{5}{2} ki te tau huripoki o \frac{16}{5}.
x+25=\left(x+5\right)\times \frac{25}{32}
Whakareatia te \frac{5}{2} ki te \frac{5}{16}, ka \frac{25}{32}.
x+25=\frac{25}{32}x+\frac{125}{32}
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te \frac{25}{32}.
x+25-\frac{25}{32}x=\frac{125}{32}
Tangohia te \frac{25}{32}x mai i ngā taha e rua.
\frac{7}{32}x+25=\frac{125}{32}
Pahekotia te x me -\frac{25}{32}x, ka \frac{7}{32}x.
\frac{7}{32}x=\frac{125}{32}-25
Tangohia te 25 mai i ngā taha e rua.
\frac{7}{32}x=-\frac{675}{32}
Tangohia te 25 i te \frac{125}{32}, ka -\frac{675}{32}.
x=-\frac{675}{32}\times \frac{32}{7}
Me whakarea ngā taha e rua ki te \frac{32}{7}, te tau utu o \frac{7}{32}.
x=-\frac{675}{7}
Whakareatia te -\frac{675}{32} ki te \frac{32}{7}, ka -\frac{675}{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}