Whakaoti mō A
A=-\frac{22-4B+x-Bx}{2-x}
x\neq -4\text{ and }x\neq 2
Whakaoti mō B
B=\frac{22+2A+x-Ax}{x+4}
x\neq -4\text{ and }x\neq 2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+22=\left(x-2\right)A+\left(x+4\right)B
Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(x+4\right)\left(x-2\right),x+4,x-2.
x+22=xA-2A+\left(x+4\right)B
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te A.
x+22=xA-2A+xB+4B
Whakamahia te āhuatanga tohatoha hei whakarea te x+4 ki te B.
xA-2A+xB+4B=x+22
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
xA-2A+4B=x+22-xB
Tangohia te xB mai i ngā taha e rua.
xA-2A=x+22-xB-4B
Tangohia te 4B mai i ngā taha e rua.
\left(x-2\right)A=x+22-xB-4B
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(x-2\right)A=22-4B+x-Bx
He hanga arowhānui tō te whārite.
\frac{\left(x-2\right)A}{x-2}=\frac{22-4B+x-Bx}{x-2}
Whakawehea ngā taha e rua ki te x-2.
A=\frac{22-4B+x-Bx}{x-2}
Mā te whakawehe ki te x-2 ka wetekia te whakareanga ki te x-2.
x+22=\left(x-2\right)A+\left(x+4\right)B
Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o \left(x+4\right)\left(x-2\right),x+4,x-2.
x+22=xA-2A+\left(x+4\right)B
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te A.
x+22=xA-2A+xB+4B
Whakamahia te āhuatanga tohatoha hei whakarea te x+4 ki te B.
xA-2A+xB+4B=x+22
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2A+xB+4B=x+22-xA
Tangohia te xA mai i ngā taha e rua.
xB+4B=x+22-xA+2A
Me tāpiri te 2A ki ngā taha e rua.
\left(x+4\right)B=x+22-xA+2A
Pahekotia ngā kīanga tau katoa e whai ana i te B.
\left(x+4\right)B=22+2A+x-Ax
He hanga arowhānui tō te whārite.
\frac{\left(x+4\right)B}{x+4}=\frac{22+2A+x-Ax}{x+4}
Whakawehea ngā taha e rua ki te x+4.
B=\frac{22+2A+x-Ax}{x+4}
Mā te whakawehe ki te x+4 ka wetekia te whakareanga ki te x+4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}