Whakaoti mō x
x<-\frac{16}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x+2\right)+2\left(x-3\right)>4\left(2x+4\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6,3. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
3x+6+2\left(x-3\right)>4\left(2x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6+2x-6>4\left(2x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
5x+6-6>4\left(2x+4\right)
Pahekotia te 3x me 2x, ka 5x.
5x>4\left(2x+4\right)
Tangohia te 6 i te 6, ka 0.
5x>8x+16
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+4.
5x-8x>16
Tangohia te 8x mai i ngā taha e rua.
-3x>16
Pahekotia te 5x me -8x, ka -3x.
x<-\frac{16}{3}
Whakawehea ngā taha e rua ki te -3. I te mea he tōraro a -3, ka huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}