Whakaoti mō x
x\geq \frac{1}{13}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+2\right)\leq 3\left(5x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2. I te mea he tōrunga te 6, kāore e huri te ahunga koreōrite.
2x+4\leq 3\left(5x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+2.
2x+4\leq 15x+3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x+1.
2x+4-15x\leq 3
Tangohia te 15x mai i ngā taha e rua.
-13x+4\leq 3
Pahekotia te 2x me -15x, ka -13x.
-13x\leq 3-4
Tangohia te 4 mai i ngā taha e rua.
-13x\leq -1
Tangohia te 4 i te 3, ka -1.
x\geq \frac{-1}{-13}
Whakawehea ngā taha e rua ki te -13. I te mea he tōraro a -13, ka huri te ahunga koreōrite.
x\geq \frac{1}{13}
Ka taea te hautanga \frac{-1}{-13} te whakamāmā ki te \frac{1}{13} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}