Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+10\right)\left(x+10\right)=x\left(x-5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+10.
\left(x+10\right)^{2}=x\left(x-5\right)
Whakareatia te x+10 ki te x+10, ka \left(x+10\right)^{2}.
x^{2}+20x+100=x\left(x-5\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+10\right)^{2}.
x^{2}+20x+100=x^{2}-5x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-5.
x^{2}+20x+100-x^{2}=-5x
Tangohia te x^{2} mai i ngā taha e rua.
20x+100=-5x
Pahekotia te x^{2} me -x^{2}, ka 0.
20x+100+5x=0
Me tāpiri te 5x ki ngā taha e rua.
25x+100=0
Pahekotia te 20x me 5x, ka 25x.
25x=-100
Tangohia te 100 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-100}{25}
Whakawehea ngā taha e rua ki te 25.
x=-4
Whakawehea te -100 ki te 25, kia riro ko -4.