Whakaoti mō x
x=-13
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x + 1 } { x - 5 } = \frac { x + 9 } { x + 7 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x+7\right)\left(x+1\right)=\left(x-5\right)\left(x+9\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -7,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+7\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,x+7.
x^{2}+8x+7=\left(x-5\right)\left(x+9\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+7 ki te x+1 ka whakakotahi i ngā kupu rite.
x^{2}+8x+7=x^{2}+4x-45
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te x+9 ka whakakotahi i ngā kupu rite.
x^{2}+8x+7-x^{2}=4x-45
Tangohia te x^{2} mai i ngā taha e rua.
8x+7=4x-45
Pahekotia te x^{2} me -x^{2}, ka 0.
8x+7-4x=-45
Tangohia te 4x mai i ngā taha e rua.
4x+7=-45
Pahekotia te 8x me -4x, ka 4x.
4x=-45-7
Tangohia te 7 mai i ngā taha e rua.
4x=-52
Tangohia te 7 i te -45, ka -52.
x=\frac{-52}{4}
Whakawehea ngā taha e rua ki te 4.
x=-13
Whakawehea te -52 ki te 4, kia riro ko -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}