Whakaoti mō x
x=5
x=0
Graph
Pātaitai
Quadratic Equation
\frac { x + 1 } { x - 3 } = - \frac { x - 6 x + 1 } { ( x - 3 ) ( x - 1 ) }
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)\left(x+1\right)=-\left(x-6x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,\left(x-3\right)\left(x-1\right).
x^{2}-1=-\left(x-6x+1\right)
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=-\left(-5x+1\right)
Pahekotia te x me -6x, ka -5x.
x^{2}-1=5x-1
Hei kimi i te tauaro o -5x+1, kimihia te tauaro o ia taurangi.
x^{2}-1-5x=-1
Tangohia te 5x mai i ngā taha e rua.
x^{2}-1-5x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x^{2}-5x=0
Tāpirihia te -1 ki te 1, ka 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±5}{2}
Tuhia te pūtakerua o te \left(-5\right)^{2}.
x=\frac{5±5}{2}
Ko te tauaro o -5 ko 5.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{5±5}{2} ina he tāpiri te ±. Tāpiri 5 ki te 5.
x=5
Whakawehe 10 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{5±5}{2} ina he tango te ±. Tango 5 mai i 5.
x=0
Whakawehe 0 ki te 2.
x=5 x=0
Kua oti te whārite te whakatau.
\left(x-1\right)\left(x+1\right)=-\left(x-6x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,\left(x-3\right)\left(x-1\right).
x^{2}-1=-\left(x-6x+1\right)
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=-\left(-5x+1\right)
Pahekotia te x me -6x, ka -5x.
x^{2}-1=5x-1
Hei kimi i te tauaro o -5x+1, kimihia te tauaro o ia taurangi.
x^{2}-1-5x=-1
Tangohia te 5x mai i ngā taha e rua.
x^{2}-5x=-1+1
Me tāpiri te 1 ki ngā taha e rua.
x^{2}-5x=0
Tāpirihia te -1 ki te 1, ka 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
x=5 x=0
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}