Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)\left(x+1\right)=-\left(x-6x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,\left(x-3\right)\left(x-1\right).
x^{2}-1=-\left(x-6x+1\right)
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=-\left(-5x+1\right)
Pahekotia te x me -6x, ka -5x.
x^{2}-1=5x-1
Hei kimi i te tauaro o -5x+1, kimihia te tauaro o ia taurangi.
x^{2}-1-5x=-1
Tangohia te 5x mai i ngā taha e rua.
x^{2}-1-5x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x^{2}-5x=0
Tāpirihia te -1 ki te 1, ka 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±5}{2}
Tuhia te pūtakerua o te \left(-5\right)^{2}.
x=\frac{5±5}{2}
Ko te tauaro o -5 ko 5.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{5±5}{2} ina he tāpiri te ±. Tāpiri 5 ki te 5.
x=5
Whakawehe 10 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{5±5}{2} ina he tango te ±. Tango 5 mai i 5.
x=0
Whakawehe 0 ki te 2.
x=5 x=0
Kua oti te whārite te whakatau.
\left(x-1\right)\left(x+1\right)=-\left(x-6x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,\left(x-3\right)\left(x-1\right).
x^{2}-1=-\left(x-6x+1\right)
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=-\left(-5x+1\right)
Pahekotia te x me -6x, ka -5x.
x^{2}-1=5x-1
Hei kimi i te tauaro o -5x+1, kimihia te tauaro o ia taurangi.
x^{2}-1-5x=-1
Tangohia te 5x mai i ngā taha e rua.
x^{2}-5x=-1+1
Me tāpiri te 1 ki ngā taha e rua.
x^{2}-5x=0
Tāpirihia te -1 ki te 1, ka 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
x=5 x=0
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.