Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)\left(x+1\right)=x\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-1.
x^{2}-1=x\left(x-2\right)
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1=x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-2.
x^{2}-1-x^{2}=-2x
Tangohia te x^{2} mai i ngā taha e rua.
-1=-2x
Pahekotia te x^{2} me -x^{2}, ka 0.
-2x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-1}{-2}
Whakawehea ngā taha e rua ki te -2.
x=\frac{1}{2}
Ka taea te hautanga \frac{-1}{-2} te whakamāmā ki te \frac{1}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.