Whakaoti mō x
x=1
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x+2\right)\left(x+1\right)+2xx=5x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1,2.
2x^{2}+4x+2+2xx=5x\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+4x+2+2x^{2}=5x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+4x+2=5x\left(x+1\right)
Pahekotia te 2x^{2} me 2x^{2}, ka 4x^{2}.
4x^{2}+4x+2=5x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+1.
4x^{2}+4x+2-5x^{2}=5x
Tangohia te 5x^{2} mai i ngā taha e rua.
-x^{2}+4x+2=5x
Pahekotia te 4x^{2} me -5x^{2}, ka -x^{2}.
-x^{2}+4x+2-5x=0
Tangohia te 5x mai i ngā taha e rua.
-x^{2}-x+2=0
Pahekotia te 4x me -5x, ka -x.
a+b=-1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-2x+2\right)
Tuhia anō te -x^{2}-x+2 hei \left(-x^{2}+x\right)+\left(-2x+2\right).
x\left(-x+1\right)+2\left(-x+1\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(-x+1\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-2
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+2=0.
\left(2x+2\right)\left(x+1\right)+2xx=5x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1,2.
2x^{2}+4x+2+2xx=5x\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+4x+2+2x^{2}=5x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+4x+2=5x\left(x+1\right)
Pahekotia te 2x^{2} me 2x^{2}, ka 4x^{2}.
4x^{2}+4x+2=5x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+1.
4x^{2}+4x+2-5x^{2}=5x
Tangohia te 5x^{2} mai i ngā taha e rua.
-x^{2}+4x+2=5x
Pahekotia te 4x^{2} me -5x^{2}, ka -x^{2}.
-x^{2}+4x+2-5x=0
Tangohia te 5x mai i ngā taha e rua.
-x^{2}-x+2=0
Pahekotia te 4x me -5x, ka -x.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
Whakareatia 4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
Tāpiri 1 ki te 8.
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 9.
x=\frac{1±3}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±3}{-2}
Whakareatia 2 ki te -1.
x=\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{1±3}{-2} ina he tāpiri te ±. Tāpiri 1 ki te 3.
x=-2
Whakawehe 4 ki te -2.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{1±3}{-2} ina he tango te ±. Tango 3 mai i 1.
x=1
Whakawehe -2 ki te -2.
x=-2 x=1
Kua oti te whārite te whakatau.
\left(2x+2\right)\left(x+1\right)+2xx=5x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1,2.
2x^{2}+4x+2+2xx=5x\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+4x+2+2x^{2}=5x\left(x+1\right)
Whakareatia te x ki te x, ka x^{2}.
4x^{2}+4x+2=5x\left(x+1\right)
Pahekotia te 2x^{2} me 2x^{2}, ka 4x^{2}.
4x^{2}+4x+2=5x^{2}+5x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+1.
4x^{2}+4x+2-5x^{2}=5x
Tangohia te 5x^{2} mai i ngā taha e rua.
-x^{2}+4x+2=5x
Pahekotia te 4x^{2} me -5x^{2}, ka -x^{2}.
-x^{2}+4x+2-5x=0
Tangohia te 5x mai i ngā taha e rua.
-x^{2}-x+2=0
Pahekotia te 4x me -5x, ka -x.
-x^{2}-x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-x^{2}-x}{-1}=-\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+x=-\frac{2}{-1}
Whakawehe -1 ki te -1.
x^{2}+x=2
Whakawehe -2 ki te -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
x=1 x=-2
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}