Whakaoti mō x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+1=5\left(x+2\right)
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+2.
x+1=5x+10
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
x+1-5x=10
Tangohia te 5x mai i ngā taha e rua.
-4x+1=10
Pahekotia te x me -5x, ka -4x.
-4x=10-1
Tangohia te 1 mai i ngā taha e rua.
-4x=9
Tangohia te 1 i te 10, ka 9.
x=\frac{9}{-4}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{9}{4}
Ka taea te hautanga \frac{9}{-4} te tuhi anō ko -\frac{9}{4} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}