Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x+1.
\left(x+1\right)^{2}=\left(x+2\right)\left(x-3\right)
Whakareatia te x+1 ki te x+1, ka \left(x+1\right)^{2}.
x^{2}+2x+1=\left(x+2\right)\left(x-3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=x^{2}-x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}+2x+1-x^{2}=-x-6
Tangohia te x^{2} mai i ngā taha e rua.
2x+1=-x-6
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+1+x=-6
Me tāpiri te x ki ngā taha e rua.
3x+1=-6
Pahekotia te 2x me x, ka 3x.
3x=-6-1
Tangohia te 1 mai i ngā taha e rua.
3x=-7
Tangohia te 1 i te -6, ka -7.
x=\frac{-7}{3}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}
Ka taea te hautanga \frac{-7}{3} te tuhi anō ko -\frac{7}{3} mā te tango i te tohu tōraro.