Whakaoti mō x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { x + 1 } { x + 2 } = \frac { x - 3 } { x + 1 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x+1.
\left(x+1\right)^{2}=\left(x+2\right)\left(x-3\right)
Whakareatia te x+1 ki te x+1, ka \left(x+1\right)^{2}.
x^{2}+2x+1=\left(x+2\right)\left(x-3\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=x^{2}-x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}+2x+1-x^{2}=-x-6
Tangohia te x^{2} mai i ngā taha e rua.
2x+1=-x-6
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+1+x=-6
Me tāpiri te x ki ngā taha e rua.
3x+1=-6
Pahekotia te 2x me x, ka 3x.
3x=-6-1
Tangohia te 1 mai i ngā taha e rua.
3x=-7
Tangohia te 1 i te -6, ka -7.
x=\frac{-7}{3}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}
Ka taea te hautanga \frac{-7}{3} te tuhi anō ko -\frac{7}{3} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}