Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}-\frac{3\left(x+1\right)}{3\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me x+2 ko 3\left(x+2\right). Whakareatia \frac{x+1}{3} ki te \frac{x+2}{x+2}. Whakareatia \frac{x+1}{x+2} ki te \frac{3}{3}.
\frac{\left(x+1\right)\left(x+2\right)-3\left(x+1\right)}{3\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)} me \frac{3\left(x+1\right)}{3\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+2x+x+2-3x-3}{3\left(x+2\right)}
Mahia ngā whakarea i roto o \left(x+1\right)\left(x+2\right)-3\left(x+1\right).
\frac{x^{2}-1}{3\left(x+2\right)}
Whakakotahitia ngā kupu rite i x^{2}+2x+x+2-3x-3.
\frac{x^{2}-1}{3x+6}
Whakarohaina te 3\left(x+2\right).
\frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}-\frac{3\left(x+1\right)}{3\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me x+2 ko 3\left(x+2\right). Whakareatia \frac{x+1}{3} ki te \frac{x+2}{x+2}. Whakareatia \frac{x+1}{x+2} ki te \frac{3}{3}.
\frac{\left(x+1\right)\left(x+2\right)-3\left(x+1\right)}{3\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)} me \frac{3\left(x+1\right)}{3\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+2x+x+2-3x-3}{3\left(x+2\right)}
Mahia ngā whakarea i roto o \left(x+1\right)\left(x+2\right)-3\left(x+1\right).
\frac{x^{2}-1}{3\left(x+2\right)}
Whakakotahitia ngā kupu rite i x^{2}+2x+x+2-3x-3.
\frac{x^{2}-1}{3x+6}
Whakarohaina te 3\left(x+2\right).