Whakaoti mō x
x = -\frac{12}{7} = -1\frac{5}{7} \approx -1.714285714
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(x+1\right)+4\left(x+3\right)=3\left(x+2\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4.
6x+6+4\left(x+3\right)=3\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+1.
6x+6+4x+12=3\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
10x+6+12=3\left(x+2\right)
Pahekotia te 6x me 4x, ka 10x.
10x+18=3\left(x+2\right)
Tāpirihia te 6 ki te 12, ka 18.
10x+18=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
10x+18-3x=6
Tangohia te 3x mai i ngā taha e rua.
7x+18=6
Pahekotia te 10x me -3x, ka 7x.
7x=6-18
Tangohia te 18 mai i ngā taha e rua.
7x=-12
Tangohia te 18 i te 6, ka -12.
x=\frac{-12}{7}
Whakawehea ngā taha e rua ki te 7.
x=-\frac{12}{7}
Ka taea te hautanga \frac{-12}{7} te tuhi anō ko -\frac{12}{7} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}