Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Tohaina

\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakakore tahi te y-v i te taurunga me te tauraro.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Unuhia te tohu tōraro i roto o 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Me whakakore tahi te -w-4 i te taurunga me te tauraro.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Me whakarea te \frac{8x+w}{y+v} ki te \frac{-\left(y+v\right)}{w-4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(8x+w\right)}{w-4}
Me whakakore tahi te y+v i te taurunga me te tauraro.
\frac{-8x-w}{w-4}
Hei kimi i te tauaro o 8x+w, kimihia te tauaro o ia taurangi.
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakakore tahi te y-v i te taurunga me te tauraro.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Unuhia te tohu tōraro i roto o 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Me whakakore tahi te -w-4 i te taurunga me te tauraro.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Me whakarea te \frac{8x+w}{y+v} ki te \frac{-\left(y+v\right)}{w-4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(8x+w\right)}{w-4}
Me whakakore tahi te y+v i te taurunga me te tauraro.
\frac{-8x-w}{w-4}
Hei kimi i te tauaro o 8x+w, kimihia te tauaro o ia taurangi.