Aromātai
-\frac{8x+w}{w-4}
Whakaroha
\frac{8x+w}{4-w}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakakore tahi te y-v i te taurunga me te tauraro.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Unuhia te tohu tōraro i roto o 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Me whakakore tahi te -w-4 i te taurunga me te tauraro.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Me whakarea te \frac{8x+w}{y+v} ki te \frac{-\left(y+v\right)}{w-4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(8x+w\right)}{w-4}
Me whakakore tahi te y+v i te taurunga me te tauraro.
\frac{-8x-w}{w-4}
Hei kimi i te tauaro o 8x+w, kimihia te tauaro o ia taurangi.
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Me whakakore tahi te y-v i te taurunga me te tauraro.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Unuhia te tohu tōraro i roto o 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Me whakakore tahi te -w-4 i te taurunga me te tauraro.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Me whakarea te \frac{8x+w}{y+v} ki te \frac{-\left(y+v\right)}{w-4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(8x+w\right)}{w-4}
Me whakakore tahi te y+v i te taurunga me te tauraro.
\frac{-8x-w}{w-4}
Hei kimi i te tauaro o 8x+w, kimihia te tauaro o ia taurangi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}