Whakaoti mō w
w=\frac{yz}{1-x}
z\neq 0\text{ and }x\neq 1
Whakaoti mō x
\left\{\begin{matrix}x=\frac{w-yz}{w}\text{, }&y\neq 0\text{ and }z\neq 0\text{ and }w\neq 0\\x\neq 1\text{, }&w=0\text{ and }y=0\text{ and }z\neq 0\end{matrix}\right.
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { w } { z } - \frac { x y } { 1 - x } - y = 0
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)w-\left(-zxy\right)-yz\left(x-1\right)=0
Me whakarea ngā taha e rua o te whārite ki te z\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o z,1-x.
xw-w-\left(-zxy\right)-yz\left(x-1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te w.
xw-w+zxy-yz\left(x-1\right)=0
Ko te tauaro o -zxy ko zxy.
xw-w+zxy-yzx+yz=0
Whakamahia te āhuatanga tohatoha hei whakarea te -yz ki te x-1.
xw-w+yz=0
Pahekotia te zxy me -yzx, ka 0.
xw-w=-yz
Tangohia te yz mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
wx-w=-yz
Whakaraupapatia anō ngā kīanga tau.
\left(x-1\right)w=-yz
Pahekotia ngā kīanga tau katoa e whai ana i te w.
\frac{\left(x-1\right)w}{x-1}=-\frac{yz}{x-1}
Whakawehea ngā taha e rua ki te x-1.
w=-\frac{yz}{x-1}
Mā te whakawehe ki te x-1 ka wetekia te whakareanga ki te x-1.
\left(x-1\right)w-\left(-zxy\right)-yz\left(x-1\right)=0
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te z\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o z,1-x.
xw-w-\left(-zxy\right)-yz\left(x-1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te w.
xw-w+zxy-yz\left(x-1\right)=0
Ko te tauaro o -zxy ko zxy.
xw-w+zxy-yzx+yz=0
Whakamahia te āhuatanga tohatoha hei whakarea te -yz ki te x-1.
xw-w+yz=0
Pahekotia te zxy me -yzx, ka 0.
xw+yz=w
Me tāpiri te w ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
xw=w-yz
Tangohia te yz mai i ngā taha e rua.
wx=w-yz
He hanga arowhānui tō te whārite.
\frac{wx}{w}=\frac{w-yz}{w}
Whakawehea ngā taha e rua ki te w.
x=\frac{w-yz}{w}
Mā te whakawehe ki te w ka wetekia te whakareanga ki te w.
x=\frac{w-yz}{w}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}