Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)w-\left(-zxy\right)-yz\left(x-1\right)=0
Me whakarea ngā taha e rua o te whārite ki te z\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o z,1-x.
xw-w-\left(-zxy\right)-yz\left(x-1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te w.
xw-w+zxy-yz\left(x-1\right)=0
Ko te tauaro o -zxy ko zxy.
xw-w+zxy-yzx+yz=0
Whakamahia te āhuatanga tohatoha hei whakarea te -yz ki te x-1.
xw-w+yz=0
Pahekotia te zxy me -yzx, ka 0.
xw-w=-yz
Tangohia te yz mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
wx-w=-yz
Whakaraupapatia anō ngā kīanga tau.
\left(x-1\right)w=-yz
Pahekotia ngā kīanga tau katoa e whai ana i te w.
\frac{\left(x-1\right)w}{x-1}=-\frac{yz}{x-1}
Whakawehea ngā taha e rua ki te x-1.
w=-\frac{yz}{x-1}
Mā te whakawehe ki te x-1 ka wetekia te whakareanga ki te x-1.
\left(x-1\right)w-\left(-zxy\right)-yz\left(x-1\right)=0
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te z\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o z,1-x.
xw-w-\left(-zxy\right)-yz\left(x-1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te w.
xw-w+zxy-yz\left(x-1\right)=0
Ko te tauaro o -zxy ko zxy.
xw-w+zxy-yzx+yz=0
Whakamahia te āhuatanga tohatoha hei whakarea te -yz ki te x-1.
xw-w+yz=0
Pahekotia te zxy me -yzx, ka 0.
xw+yz=w
Me tāpiri te w ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
xw=w-yz
Tangohia te yz mai i ngā taha e rua.
wx=w-yz
He hanga arowhānui tō te whārite.
\frac{wx}{w}=\frac{w-yz}{w}
Whakawehea ngā taha e rua ki te w.
x=\frac{w-yz}{w}
Mā te whakawehe ki te w ka wetekia te whakareanga ki te w.
x=\frac{w-yz}{w}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.