Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{w}{\frac{wy}{y}-\frac{w}{y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia w ki te \frac{y}{y}.
\frac{w}{\frac{wy-w}{y}}
Tā te mea he rite te tauraro o \frac{wy}{y} me \frac{w}{y}, me tango rāua mā te tango i ō raua taurunga.
\frac{wy}{wy-w}
Whakawehe w ki te \frac{wy-w}{y} mā te whakarea w ki te tau huripoki o \frac{wy-w}{y}.
\frac{wy}{w\left(y-1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{y}{y-1}
Me whakakore tahi te w i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{w}{\frac{wy}{y}-\frac{w}{y}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia w ki te \frac{y}{y}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{w}{\frac{wy-w}{y}})
Tā te mea he rite te tauraro o \frac{wy}{y} me \frac{w}{y}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{wy}{wy-w})
Whakawehe w ki te \frac{wy-w}{y} mā te whakarea w ki te tau huripoki o \frac{wy-w}{y}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{wy}{w\left(y-1\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{wy}{wy-w}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y}{y-1})
Me whakakore tahi te w i te taurunga me te tauraro.
\frac{\left(y^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{1})-y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{1}-1)}{\left(y^{1}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(y^{1}-1\right)y^{1-1}-y^{1}y^{1-1}}{\left(y^{1}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(y^{1}-1\right)y^{0}-y^{1}y^{0}}{\left(y^{1}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{y^{1}y^{0}-y^{0}-y^{1}y^{0}}{\left(y^{1}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{y^{1}-y^{0}-y^{1}}{\left(y^{1}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{\left(1-1\right)y^{1}-y^{0}}{\left(y^{1}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-y^{0}}{\left(y^{1}-1\right)^{2}}
Tango 1 mai i 1.
\frac{-y^{0}}{\left(y-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-1}{\left(y-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.