Aromātai
w-12
Whakaroha
w-12
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { w ^ { 2 } } { w - 9 } - \frac { 21 w - 108 } { w - 9 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{w^{2}-\left(21w-108\right)}{w-9}
Tā te mea he rite te tauraro o \frac{w^{2}}{w-9} me \frac{21w-108}{w-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{w^{2}-21w+108}{w-9}
Mahia ngā whakarea i roto o w^{2}-\left(21w-108\right).
\frac{\left(w-12\right)\left(w-9\right)}{w-9}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{w^{2}-21w+108}{w-9}.
w-12
Me whakakore tahi te w-9 i te taurunga me te tauraro.
\frac{w^{2}-\left(21w-108\right)}{w-9}
Tā te mea he rite te tauraro o \frac{w^{2}}{w-9} me \frac{21w-108}{w-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{w^{2}-21w+108}{w-9}
Mahia ngā whakarea i roto o w^{2}-\left(21w-108\right).
\frac{\left(w-12\right)\left(w-9\right)}{w-9}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{w^{2}-21w+108}{w-9}.
w-12
Me whakakore tahi te w-9 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}