Whakaoti mō w
w=-2
Tohaina
Kua tāruatia ki te papatopenga
w^{2}-8=2w
Tē taea kia ōrite te tāupe w ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w-4.
w^{2}-8-2w=0
Tangohia te 2w mai i ngā taha e rua.
w^{2}-2w-8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-2 ab=-8
Hei whakaoti i te whārite, whakatauwehea te w^{2}-2w-8 mā te whakamahi i te tātai w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-4 b=2
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(w-4\right)\left(w+2\right)
Me tuhi anō te kīanga whakatauwehe \left(w+a\right)\left(w+b\right) mā ngā uara i tātaihia.
w=4 w=-2
Hei kimi otinga whārite, me whakaoti te w-4=0 me te w+2=0.
w=-2
Tē taea kia ōrite te tāupe w ki 4.
w^{2}-8=2w
Tē taea kia ōrite te tāupe w ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w-4.
w^{2}-8-2w=0
Tangohia te 2w mai i ngā taha e rua.
w^{2}-2w-8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-2 ab=1\left(-8\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei w^{2}+aw+bw-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-4 b=2
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(w^{2}-4w\right)+\left(2w-8\right)
Tuhia anō te w^{2}-2w-8 hei \left(w^{2}-4w\right)+\left(2w-8\right).
w\left(w-4\right)+2\left(w-4\right)
Tauwehea te w i te tuatahi me te 2 i te rōpū tuarua.
\left(w-4\right)\left(w+2\right)
Whakatauwehea atu te kīanga pātahi w-4 mā te whakamahi i te āhuatanga tātai tohatoha.
w=4 w=-2
Hei kimi otinga whārite, me whakaoti te w-4=0 me te w+2=0.
w=-2
Tē taea kia ōrite te tāupe w ki 4.
w^{2}-8=2w
Tē taea kia ōrite te tāupe w ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w-4.
w^{2}-8-2w=0
Tangohia te 2w mai i ngā taha e rua.
w^{2}-2w-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
Pūrua -2.
w=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
Whakareatia -4 ki te -8.
w=\frac{-\left(-2\right)±\sqrt{36}}{2}
Tāpiri 4 ki te 32.
w=\frac{-\left(-2\right)±6}{2}
Tuhia te pūtakerua o te 36.
w=\frac{2±6}{2}
Ko te tauaro o -2 ko 2.
w=\frac{8}{2}
Nā, me whakaoti te whārite w=\frac{2±6}{2} ina he tāpiri te ±. Tāpiri 2 ki te 6.
w=4
Whakawehe 8 ki te 2.
w=-\frac{4}{2}
Nā, me whakaoti te whārite w=\frac{2±6}{2} ina he tango te ±. Tango 6 mai i 2.
w=-2
Whakawehe -4 ki te 2.
w=4 w=-2
Kua oti te whārite te whakatau.
w=-2
Tē taea kia ōrite te tāupe w ki 4.
w^{2}-8=2w
Tē taea kia ōrite te tāupe w ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w-4.
w^{2}-8-2w=0
Tangohia te 2w mai i ngā taha e rua.
w^{2}-2w=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
w^{2}-2w+1=8+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-2w+1=9
Tāpiri 8 ki te 1.
\left(w-1\right)^{2}=9
Tauwehea w^{2}-2w+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-1=3 w-1=-3
Whakarūnātia.
w=4 w=-2
Me tāpiri 1 ki ngā taha e rua o te whārite.
w=-2
Tē taea kia ōrite te tāupe w ki 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}