Whakaoti mō v
v=\frac{3x_{c}}{265}
x_{c}\neq 0
Whakaoti mō x_c
x_{c}=\frac{265v}{3}
v\neq 0
Tohaina
Kua tāruatia ki te papatopenga
v=\frac{1}{10600}x_{c}\times 120
Whakareatia ngā taha e rua o te whārite ki te x_{c}.
v=\frac{3}{265}x_{c}
Whakareatia te \frac{1}{10600} ki te 120, ka \frac{3}{265}.
v=\frac{1}{10600}x_{c}\times 120
Tē taea kia ōrite te tāupe x_{c} ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x_{c}.
v=\frac{3}{265}x_{c}
Whakareatia te \frac{1}{10600} ki te 120, ka \frac{3}{265}.
\frac{3}{265}x_{c}=v
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{\frac{3}{265}x_{c}}{\frac{3}{265}}=\frac{v}{\frac{3}{265}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{265}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x_{c}=\frac{v}{\frac{3}{265}}
Mā te whakawehe ki te \frac{3}{265} ka wetekia te whakareanga ki te \frac{3}{265}.
x_{c}=\frac{265v}{3}
Whakawehe v ki te \frac{3}{265} mā te whakarea v ki te tau huripoki o \frac{3}{265}.
x_{c}=\frac{265v}{3}\text{, }x_{c}\neq 0
Tē taea kia ōrite te tāupe x_{c} ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}