Aromātai
\frac{v+3}{v+1}
Kimi Pārōnaki e ai ki v
-\frac{2}{\left(v+1\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o v+1 me v-1 ko \left(v-1\right)\left(v+1\right). Whakareatia \frac{v}{v+1} ki te \frac{v-1}{v-1}. Whakareatia \frac{3}{v-1} ki te \frac{v+1}{v+1}.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Tā te mea he rite te tauraro o \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} me \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Mahia ngā whakarea i roto o v\left(v-1\right)+3\left(v+1\right).
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Whakakotahitia ngā kupu rite i v^{2}-v+3v+3.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
Tauwehea te v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
Tā te mea he rite te tauraro o \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} me \frac{6}{\left(v-1\right)\left(v+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
Whakakotahitia ngā kupu rite i v^{2}+2v+3-6.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{v+3}{v+1}
Me whakakore tahi te v-1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o v+1 me v-1 ko \left(v-1\right)\left(v+1\right). Whakareatia \frac{v}{v+1} ki te \frac{v-1}{v-1}. Whakareatia \frac{3}{v-1} ki te \frac{v+1}{v+1}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Tā te mea he rite te tauraro o \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} me \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Mahia ngā whakarea i roto o v\left(v-1\right)+3\left(v+1\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Whakakotahitia ngā kupu rite i v^{2}-v+3v+3.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
Tauwehea te v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
Tā te mea he rite te tauraro o \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} me \frac{6}{\left(v-1\right)\left(v+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
Whakakotahitia ngā kupu rite i v^{2}+2v+3-6.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
Me whakakore tahi te v-1 i te taurunga me te tauraro.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
Tangohia te 1 i 1 me te 3 i te 1.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}